Synthesis, Crystal Structure, and Physical Properties of a New Reduced Lanthanum Niobium Oxide: LaNb₇O₁₂

J. Xu, T. Emge, and M. Greenblatt¹

Department of Chemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855-0939

Received September 5, 1995; accepted December 20, 1995

mixture of La₂O₃, Nb₂O₅, and Nb in 1:1:1 molar ratio with **NH₄Cl in a sealed quartz tube. LaNb₇O₁₂ crystallizes in the (Oⁱ) above the edges of a Nb₆ octahedron and six oxygens monoclinic space group** $P2_1/c$ **with cell parameters** $a =$ **above the apices of the octahedron t** monoclinic space group $P2_1/c$ with cell parameters $a = 10.762(1)$, $b = 9.192(1)$, $c = 10.314(1)$ Å, $\beta = 104.25^{\circ}$, and $z = 4$ formula units per cell. The structure was determined from z – 4 formula units per cent. The structure was determined from
single-crystal X-ray diffraction data and refined to a residual of
 $R(F) = 0.037$ and $R_w(F^2) = 0.077$ for 119 variable parameters
and a unique data set of 1400 and a unique data set of 1400 observations $[I > 2\sigma(I)]$. The this convention will be followed in this paper hereafter.
essential building units of the structure are Nb₆ and NbO₆. The discrete Nb₆O₁₂ clusters may be **octahedra and La ions in eight coordination of oxygen. Two** bridging oxygen atoms in three different linkages, i.e., NbO₆ octahedra corner-share to form a pair and connect with O^{i-j} , O^{a-a} , and O^{a-i} . Typically NbO₆ octahedra corner-share to form a pair and connect with $Nb₆$ **octahedra via oxygen atoms. Nb₆ octahedra share both** $A(A = Na, K, Rb, Ba, La, and Eu)$ donate electrons to **apical and inner oxygen atoms with neighboring** Nb_6 **to form** the Nb_6O_{12} cluster, and stabilize the structure.
 columns of Nb_6O_{12} **clusters along the c axis. The** Nb_6O_{12} **clusters** In the ternary La–Nb–O system columns of Nb_6O_{12} clusters along the c axis. The Nb_6O_{12} clusters
exhibit 14 valence electrons in M-M bonding states. LaNb₇O₁₂ LaNb₈O₁₄, has been reported so far (9). It should be possi-
is a semiconductor

molybdates with structures built up of condensed $Mo₆$ octa-cluster compounds are also presented. hedra are well known (1). The condensation, which occurs along edges or faces of the Mo₆ octahedra, leads to a variety **EXPERIMENTAL** of oligomeric and infinite cluster structures. Because of the low-dimensional (LD) structural and electronic proper- *Sample Preparation*

The Nb_6 octahedra in the " Nb_6O_{18} " clusters are bonded **Single crystals of LaNb₇O₁₂ were obtained by annealing a** to oxygen atoms and can be represented by the formula ${}_{12}^iO_6^a$. There are twelve so-called inner oxygen atoms outer ligands (O^a) (Fig. 1). By convention, the O^a ligands

dent paramagnetism. The Madelung part of the lattice energy
has been calculated and is discussed. \circ 1996 Academic Press, Inc.
taining discrete Nb₆O₁₂ clusters with 14 valence electrons: LaNb₇O₁₂. We report here the synthesis, single crystal structure determination, and the study of the physical prop- **INTRODUCTION** erties of $LaNb₇O₁₂$. A comparison of the structure, as well Many reduced molybdenum chalcogenides and oxo- as the physical properties, with related reduced niobium

ties of these materials, the physical properties, especially
electronic instabilities associated with LD structures, Y_2O_3 (Alfa, 99.5%), La₂O₃ (Aldrich,
are of interest. Although a few oxomolybdates with
dis pellets. The crystals were washed with water before X-ray

¹ To whom correspondence should be addressed. **1** intensity data collection.

FIG. 1. The $Nb_6O_{12}^iO_6^a$ unit occurring in LaNb₇O₁₂.

mixture was thoroughly ground, pelletized, sealed in an

A single crystal of LaNb₇O₁₂ with dimensions $0.016 \times$ data were corrected for Lorentz effects and polarization.
0.036 \times 0.044 mm³ was selected for X-ray intensity A numerical (SHELX76) absorption correction was data collection. The data were collected on an Enraf- formed, and the transmission factors were in the range Nonius CAD4 diffractometer with graphite monochro- 0.606-0.823. The cell parameters and details of the data

Once the crystal composition had been determined matized Mo-*K* α radiation ($\lambda' = 0.71073$ Å) at room tempolycrystalline samples of LaNb₇O₁₂ were prepared using perature. The intensity data were measured up to $\theta = 26^{\circ}$ a stoichiometric mixture of Nb, $NbO₂$, and $La₂O₃$. The with ω scan mode. The unit cell parameters and orientation mixture was thoroughly ground, pelletized, sealed in an matrix for data collection were evacuated quartz tube, and heated at 1300°C for 2 days. squares fitting of 25 reflections with $32^{\circ} < 2\theta < 46^{\circ}$. Of the 2277 reflections collected in the $\pm h$, $\pm k$, $\pm l$ quadrant, *Single Crystal X-Ray Diffraction Data* 1400 had $I > 2\sigma(I)$. The intensity of three standard reflection. The *Single Crystal X-Ray Diffraction Data* tions varied less than 1% during the data collection. The A numerical (SHELX76) absorption correction was per-

collection are given in Table 1. The U_{ij} components of the
La atom displacement parameters were restrained to be
Displacement Coefficients (\AA^2)^a for LaNb-O₁₂ isotropic within an estimated standard deviation of 0.01 Å.

Determination and Refinement of the Structure

Electrical Resistivity and Magnetic Susceptibility a Estimated standard deviations of refined parameters are enclosed *Measurements* in parentheses.

Electrical resistivity measurements on a pellet of La $Nb₇O₁₂$ were made by a standard four-probe technique

TABLE 1 with a Displex Cryostat (APD cryogenics, model DE 202)
Summary of Crystal Data and Structure Refinement in the temperature range 150–300 K. Indium leads and **Summary of Crystal Data and Structure Refinement** in the temperature range 150–300 K. Indium leads and **Results for LaNb**₇O₁₂ silver paint were used to make ohmic contacts to the sample. There was no appreciable variation of the resistivity curve between cooling and heating cycles.

Magnetic susceptibility data on a pellet of $\text{LaNb}_7\text{O}_{12}$ were recorded with a Quantum Design SQUID magnetometer in the temperature range $2.5 \sim 300$ K. The applied magnetic field was 10,000 G.

DISCUSSION

The plate-like, black single crystals grown in the pres- ence of $NH₄Cl$ were embedded on the surface of the pellet. No crystals were transported. The 5% NH₄Cl presumably served to enhance localized melting, which promoted the formation of the crystals. The synthesis of the corresponding polycrystalline $\text{LaNb}_7\text{O}_{12}$ sample was attempted from s toichiometric mixtures (e.g., no NH₄Cl) of different starting materials: (i) La_2O_3 , Nb, NbO₂; (ii) La_2O_3 , NbO, NbO_2 ; (iii) La₂O₃, Nb, Nb₂O₅. At heating temperatures below 1250°C, significant amounts of the LaNb₇O₁₂ phase

TABLE 2 \int_a^a for LaNb₇O₁₂

isotropic within an estimated standard deviation of 0.01 A .					
Determination and Refinement of the Structure	Atom	\boldsymbol{x}	y	Z.	$U_{(equiv)}$
	Nb1	0.41905(9)	0.1198(1)	0.1854(1)	$0.0035(2)^b$
SHELXS86 and SHELXL93 packages were used for the	N _b 2	0.28002(9)	0.1170(1)	0.9073(1)	$0.0038(2)^b$
crystal structure solution and refinement, respectively. The	Nb3	0.15464(9)	0.1262(1)	0.1175(1)	$0.0042(2)^{b}$
general reflection conditions, $l = 2n$ for h0l and $k = 2n$	N _b 4	0.58750(9)	0.1344(1)	0.9687(1)	$0.0039(2)^{b}$
for 0k0, were consistent with space group $P21/c$. The La	N _b 5	0.14867(8)	$-0.1277(1)$	$-0.03934(9)$	$0.0031(2)^{b}$
and Nb atom coordinates were found using direct methods	Nb6	0.71735(9)	0.1244(1)	0.7669(1)	$0.0038(2)^{b}$
	Nb7	$-0.00054(9)$	0.1143(1)	0.3394(1)	$0.0041(2)^{b}$
and the O atoms were located by Fourier methods to com-	La	0.33100(6)	0.48464(7)	0.05287(7)	$0.0085(2)^b$
plete the structural model. The structure and thermal pa-	O ₁	0.7190(7)	0.2290(8)	0.5796(8)	0.0061(16)
rameters refined by full-matrix least-squares methods led	O ₂	0.1511(7)	0.2649(8)	$-0.0452(8)$	0.0078(17)
to $R(F) = 0.037$ and $R_w(F^2) = 0.077$ for 1400 observed	O ₃	0.5868(7)	0.2695(8)	0.8123(8)	0.0074(17)
data with $I > 2\sigma(I)$. The maximum and minimum residual	O4	0.2901(7)	0.2310(8)	0.7217(8)	0.0041(16)
	O ₅	0.4233(7)	0.2514(8)	0.0200(8)	0.0032(16)
electron densities in the final difference Fourier map were	O ₆	0.1364(7)	$-0.2598(8)$	0.1211(8)	0.0043(16)
2.4 and -2.3 e/ \AA^3 , respectively, and were near the La	O ₇	0.0040(7)	0.2340(8)	0.1863(8)	0.0057(16)
atoms. The final positional and equivalent isotropic dis-	O8	0	0	0.5	0.0124(23)
placement parameters are given in Table 2. Table 3 gives	O ₉	0.5692(6)	0.0003(8)	0.1379(7)	0.0036(14)
the final anisotropic displacement parameters for the non-	O10		Ω	θ	0.0036(20)
	O11	0.1514(7)	0.0077(8)	0.2928(7)	0.0046(15)
O atoms. Table 4 contains the bond distances and angles	O12	$-0.1395(6)$	0.0061(8)	0.2166(7)	0.0058(15)
for LaNb ₇ O ₁₂ .	O13	0.4291(6)	$-0.0022(8)$	0.3555(7)	0.0060(15)

^b Atoms are refined anisotropically:

 b^*ab cos γ + $U_{13}a^*c^*ac$ cos $\beta + U_{23}b^*$

TABLE 3 Anosotropic Displacement Parameters $(\AA^2)^a$ for LaNb₇O₁₂

Element	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Nb1	0.0039(4)	0.0038(5)	0.0035(5)	$-0.0004(4)$	0.0021(4)	$-0.0000(4)$
Nb2	0.0044(4)	0.0045(5)	0.0033(5)	0.0006(4)	0.0024(3)	0.0002(4)
Nb3	0.0045(5)	0.0055(5)	0.0035(5)	$-0.0000(4)$	0.0026(4)	0.0002(4)
Nb4	0.0045(4)	0.0044(5)	0.0038(5)	$-0.0000(4)$	0.0032(4)	0.0000(4)
Nb ₅	0.0034(5)	0.0041(5)	0.0026(5)	$-0.0006(4)$	0.0023(4)	0.0002(4)
N _b 6	0.0053(4)	0.0041(5)	0.0031(5)	0.0001(4)	0.0028(4)	$-0.0001(4)$
N _b 7	0.0044(5)	0.0057(5)	0.0031(5)	0.0000(4)	0.0030(4)	$-0.0000(4)$
La1	0.0109(3)	0.0067(3)	0.0090(3)	0.0003(3)	0.0047(3)	0.0005(3)

Note. The anisotropic displacement exponent takes the form $-2\pi^2[h^2a^{*2}U_{11} + \cdots + 2hka^{*}b^{*}U_{12}]$. *^a* Estimated standard deviations are enclosed in parentheses.

 A^{*1} -x + 1, -y, -z + 1; $A^{*2}x$, y, z - 1; $A^{*3}x$, -y + $\frac{1}{2}$, z - $\frac{1}{2}$; $A^{*4}-x$ + 1

yields of polycrystalline $\text{LaNb}_7\text{O}_{12}$ formed at 1300°C for **TABLE 4** mixtures (i) and (ii) above. The third mixture (La_2O_3) , $\text{Nb}, \text{Nb}_2\text{O}_5$ resulted in poorly crystalline $\text{LaNb}_7\text{O}_{12}$. The **for Form 21** powder X-ray diffraction (PXD) patterns could be indexed in space group $P2_1/c$ with cell parameters $a = 10.763(4)$,
 $b = 9.192(2)$, $c = 10.318(2)$ Å, and $\beta = 104.26(2)$ °, which are in excellent agreement with the single crystal results (Table 1). The observed and calculated d spacing and the associated relative intensities of the PXD reflections are listed in Table 5.

Description of the Crystal Structure

The basic building units of $LaNb₇O₁₂$ are Nb₆ octahedra, $NbO₆ octahedra,$ and eight-coordinated $LaO₈$. Nb₆ octahedra connect with oxygen atoms exclusively to give the clusters are discrete, rather than condensed. Two NbO₆ octahedra corner share to form $Nb₂O₁₁$ pairs (Fig. 2a). The framework of $LaNb₇O₁₂$ is made up of double columns of graphic direction, separated by a column of $Nb₂O₁₁$ octahedra pairs along the *a* axis (Fig. 3). The Nb_6O_{12} clusters are related by a twofold screw axis along the *b* axis and are interconnected by sharing both their inner $(Oⁱ)$ and apical (O^a) oxygen atoms. The Nb₂O₁₁ pairs also share their oxygens with the Nb_6O_{12} clusters. The La ions are located in eight oxygen coordinated interstices of the lattice (Fig. 2b).
Figure 4 illustrates the complete structure projected in the *bc* plane.

Of the seven crystallographically unique niobium atoms,
six Nb atoms form the Nb_6 metal octahedron (Fig. 1).
The Nb-Nb bond distances within the Nb_6O_{12} clusters are comparable to those observed in other reduced niobium oxides (8). However, the $Nb₆$ octahedron is significantly distorted, as evidenced in the varied Nb–Nb bond distances (Table 4). In the basal plane of the $Nb₆$ octahedron, the Note. Estimated standard deviations are enclosed in parentheses. Nb–Nb distances of opposite edges are 2.753(1) vs 2.759(1) $-x + 1 - y - z + 1^*z - y - z + 1^*z - y - 1^*z - y + 1^*z - z - 1^*z$ $y + \frac{1}{2}, -z + \frac{1}{2}$. plane is more or less rectangular, rather than square

\boldsymbol{h}	\boldsymbol{k}	l	d -calc.	d -obs.	Intensity	octahedral coordination to oxygen. How
						bond angles of O-Nb-O deviate from (Table 4), which indicates that the Nb
$\overline{0}$	1	1	6.768	6.778	9	
-1	$\boldsymbol{0}$	$\mathbf{2}$	5.016	5.024	4	strongly distorted.
$\boldsymbol{0}$	$\mathfrak{2}$	$\boldsymbol{0}$	4.596	4.605	7	The La atoms are coordinated to ei
$\boldsymbol{0}$	$\mathbf{2}$ $\mathbf{0}$	1	4.176	4.174	7	(Fig. 2b). The La-O bond distances are
1 -1		2 $\mathbf{1}$	4.130	4.138	6 $\overline{7}$	2.42 to 2.90 \AA ; the latter are much lor
-2	$\sqrt{2}$ \overline{c}	$\mathbf{1}$	4.022 3.437	4.017 3.436	21	lanthanum haloniobates $(10, 11)$ with t
-3	$\mathbf{1}$	1	3.327	3.331	$\boldsymbol{7}$	tion. This might arise from the larger Co
\overline{c}	2	$\mathbf{1}$	3.108	3.101	11	
-2	$\mathfrak{2}$	$\mathbf{2}$	3.083	3.082	$\,$ 8 $\,$	between divalent anions (O^{2-}) than
-2	$\mathbf{1}$	3	3.012	3.010	12	and Cl ⁻ .
$\boldsymbol{0}$	3	1	2.930	2.931	41	
3	$\mathbf{1}$	1	2.902	2.901	13	Bond-Order Sum
-1	3	$\mathbf{1}$	2.875	2.873	4	
$\mathbf{1}$	$\mathbf{1}$	3	2.826	2.829	27	Bond-order sums (12) were calculate
-1	$\mathbf{2}$	3	2.749	2.750	36	
-2	3	$\mathbf{1}$	2.637	2.638	$\boldsymbol{9}$	
-1	$\boldsymbol{0}$	4	2.580	2.580	22	$s = \exp [(r_0 - r)/B],$
$\overline{3}$	$\sqrt{2}$	1	2.547	2.550	5	
-1	$\mathbf{1}$	4	2.484	2.483	60	
-4	2	1	2.322	2.321	4	where $B = 0.37$ and $r_0(Nb-O) = 1.91$.
$\overline{0}$	$\overline{4}$	$\boldsymbol{0}$	2.298	2.297	14	sum for the $Nb(7)$ atom which is octahe
-3	$\mathbf{1}$	4	2.248	2.249	25	to oxygen atoms is 4.77. Therefore, the
-5	1	$\mathbf{1}$	2.094	2.094	6	is assigned for $Nb(7)$. The La ion is assured
$\boldsymbol{0}$	4	2	2.088	2.088	6	
$\mathbf{1}$	$\mathbf{2}$	4	2.061	2.062	6	tion state $3+$. Accordingly, in $La^{3+}Nb^5$
$\mathbf{1}$	$\overline{4}$	2	2.008	2.009	τ	are $24 - 3 - 5 = 16$ negative charges to 1
$-1\,$	3	4	1.973	1.973	100	the six niobium cluster atoms. Thus, the
3	\overline{c}	3	1.952	1.950	7	remaining in metal-metal bonding stat
-3	$\overline{4}$	$\mathbf{2}$	1.877	1.878	$\,$ 8 $\,$	a feature which is also found in M_3Nb
$\mathbf{0}$	5	$\mathbf{1}$	1.808	1.808	14	Mn) (4) and $MNb_8O_{14}(M = Sr, Ba)$ (1
-1	$\sqrt{5}$	$\mathbf{1}$	1.795	1.795	13	
-2	5	$\mathbf{1}$	1.732	1.732	7	
-1	4	4	1.716	1.716	42	
-5	$\mathbf{1}$	5	1.636	1.636	23	
-1	5	4	1.497	1.497	36	a 07
3	\overline{c}	5	1.489	1.489	22	

shaped. The average bond distance between the four basal Nb atoms and Nb(6) is slightly shorter $(\sim 2.798 \text{ Å})$ than that between Nb(2) (\sim 2.836 Å). Thus it appears that half of the $Nb₆$ octahedron is elongated. The bond distances between the Nb and O^a and O^i atoms are expected to be in the range from 2.15 \sim 2.35 Å and from 2.02 to 2.13 Å (5), respectively. In LaNb₇O₁₂, the Nb–O^a distances (2.16) to 2.24 \AA) are within the expected range; the Nb–Oⁱ distances also fall into the expected range, except for two longer ones, $Nb(4)-O^{i}(9)^{i\bar{i}1}$ (2.161(7) Å) and $Nb(4)$ - $O^{i}(9)^{\#2}(2.185(7)$ Å) (Table 4). These two longer bond distances are attributed to the distortion of $Nb₆$ octahedron in which the Nb–Nb bond distances within the $Nb(1)$ – Nb(2)–Nb(4) triangular plane are longer than the rest of the Nb–Nb bond distances. **FIG. 2.** (a) Corner-sharing of two NbO₆ octahedra. (b) Lanthanum

The Nb(7) atoms form the centers of the NbO₆ octahe- coordination in LaNb₇O₁₂.

The La atoms are coordinated to eight oxygen atoms
(Fig. 2b). The La–O bond distances are in the range from
2.42 to 2.90 Å; the latter are much longer than those in lanthanum haloniobates $(10, 11)$ with the same coordination. This might arise from the larger Coulombic repulsion between divalent anions (O^{2-}) than that between O^{2-}

$Bond-Order Sum$

Bond-order sums (12) were calculated using

$$
s = \exp [(r_0 - r)/B]
$$

where $B = 0.37$ and $r_0(Nb-O) = 1.912$. The bond-order sum for the $Nb(7)$ atom which is octahedrally coordinated to oxygen atoms is 4.77. Therefore, the $5+$ oxidation state is assigned for Nb(7). The La ion is assumed to have oxidation state 3+. Accordingly, in La³⁺Nb⁵⁺(7)Nb₆O²₂, there are $24 - 3 - 5 = 16$ negative charges to be compensated by the six niobium cluster atoms. Thus, there are 14 electrons remaining in metal–metal bonding states per $Nb₆$ cluster, a feature which is also found in $M_3Nb_6O_{11}$ ($M = Mg$ or Mn) (4) and $MNb_8O_{14}(M = Sr, Ba)$ (13, 14).

FIG. 3. Projection of LaNb₇O₁₂ on *ac* plane. Large open circles, O; small circles, Nb.

^a Calculated using the positional parameters of LaNb₇O₁₂.

FIG. 5. Resistivity as a function of temperature of $LaNb₇O₁₂$.

It has been demonstrated in several niobium cluster com-
pounds (9, 13, 15) that the concept of the Madelung part
of the lattice energy (MAPLE) can be applied to oxides
containing metal-metal bonds (16). The MAPLE value o

$$
1/2 \text{ La}_2\text{O}_3 + 1/2 \text{ Nb}_2\text{O}_5 + \text{``Nb}_6\text{O}_8\text{''} = \text{LaNb}_7\text{O}_{12}
$$

$$
1/2(3387.7) + 1/2(9042.3) + 8615.5 = 14830.5 \text{ Kcal/mol},
$$

Electrical resistivity measurements on a pressed pellet of LaNb₇O₁₂ reveal that the room temperature resistivity diagram of $SrNb₈O₁₄$ adopted for LaNb₇O₁₂ (7b). The left is \sim 98 Ω \cdot cm. The electrical resistivity as a function of panel of Fig. 7 is derived from the molecular orbital level temperature increases exponentially with decreasing temperature, indicating semiconducting behavior. The thermal However, for the oxide cluster $Nb_6O_{12}^iO_6^a$, the a_{2u} level is activation energy (E_a) for conduction estimated from the dominated by antibonding character. Thus the gap belinear portion of the plot of log ρ vs 1000/*T* (Fig. 5) in the tween the a_{2u} and t_{2g} orbitals is significant. A group of temperature range 180–300 K is 0.08 (1) eV. Since the seven orbitals $(a_{1g}, t_{1u},$ and $t_{2g})$ are bonding and filled

*MAPLE Values of LaNb₇O*₁₂ resistivity of the sample is relatively large, the small E_a

rities may be present in the sample.

E *lectronic Band Structure*

[1] In order to understand the electrical transport and magnetic properties of $LaNb₇O₁₂$ one turns to the electronic (where the value for the hypothetical binary oxide

"Nb₆O₃" with 14 electrons in metal-metal bonding states

was calculated from Mg₃Nb₆O₁₁ (13)) in excellent

agreement (within 0.2% range) with the MAPLE value
 agreement (within 0.2% range) with the MAPLE value tural units of Nb_6O_{12} discrete clusters and Nb_6 octahedra of LaNb₇O₁₂.
forming the network structure (13). Moreover, the Nb₆ *Electrical Resistivity and Magnetic Properties* octahedra in SrNb₈O₁₄ also have 14 electrons in Nb–Nb bands. Figure 7 shows the molecular orbital energy level diagram of the discrete $Nb_6O_{12}^1O_6^a$ unit (7a) and the band diagram of $Nb_6Cl_{18}^{4-}$ in which the a_{2u} is nonbonding (19).

FIG. 6. Magnetic susceptibility as a function of temperature of $\text{LaNb}_7\text{O}_{12}$.

the t_{2g} level may be removed, which would give rise to even narrower bands, as in $SrNb₈O₁₄$ (8). Electrons in filled narrow bands often show weak temperature-independent **CONCLUSION** paramagnetism due to localization effects.

possible resultant band scheme (b) for LaNb₇O₁₂. Rouxel, Ed.), p. 179. Reidel, Dordrecht, 1986; (b) R. Chevrel and

with 14 electrons while a_{2u} is antibonding and empty. In The number of valence electrons in oxoniobates varies an extended lattice the discrete levels arising from this from 13 (9) to 15.5 (15). It is possible to repl from 13 (9) to 15.5 (15). It is possible to replace lanthanum structure unit will broaden into bands (7b). It is clear that La³⁺ with divalent cations (A) in LaNb₇O₁₂, for example, the $M-M$ valence electrons fill up to the t_{2g} band and leave alkaline earth metal cations, to change the valence electron the a_{2g} band empty. This accounts for the semiconducting count and the filling of the bands. To better understand behavior. Since the Nb_6O_{12} clusters are not condensed, the how the physical properties of ANb_7O_{12} compounds vary bands $(a_{1g}, t_{1u},$ and $t_{2g})$ should be narrow. Furthermore, with the number of valence electrons, we are currently in due to the distortion of Nb₆ octahedra, the degeneracy of the process of preparing the analogous compounds with the t_{2g} level may be removed, which would give rise to $A = \text{Sr}^{2+}$, Ba²⁺, and Ca²⁺.

 $LaNb₇O₁₂$ is a new reduced oxoniobate containing discrete Nb_6O_{12} clusters with 14 valence electrons filling a set of narrow bands. It shows semiconducting behavior with a small $E_a \sim 0.08$ eV and weak temperature-independent paramagnetism. The small activation energy is attributed to extrinsic effects and does not correspond to the $t_{2g}-a_{2u}$ energy gap.

ACKNOWLEDGMENTS

We thank Professor W. H. McCarroll for critically reading this manuscript and useful comments. Research was supported by the National Science Foundation Solid State Chemistry Grant DMR-93-14605.

REFERENCES

1. (a) J. D. Corbett and R. E. McCarley, *in* ''Crystal Chemistry and FIG. 7. A molecular orbital level for the Nb₆O₁₈ cluster (a) and a Properties of Materials with Quasi-One-Dimensional Structures'' (J.

Quasi-One-Dimensional Structures" (J. Rouxel, Ed.), p. 315. Reidel, 80 (1982).

- 2. B. Lindblom and R. Strandberg, *Acta Chem. Scand.* **43,** 825 **48,** 142 (1983). (1989). 12. I. D. Brown and D. Altermatt, *Acta Crystallogr. B* **41,** 244 (1985).
-
- 4. (a) B. O. Marinder, *Chem. Scr.* **11**, 97 (1977); (b) R. Burnus, J. Köhler, *Met.* **142**, 123 (1988). and A. Simon, *Z. Naturforsch.* 426, 536 (1987). 14. J. Hibble, A. K. Cheetham, J. Köhler, and A. Simon, *J. Less-Common*
- 5. J. Köhler and A. Simon, *Z. Anorg. Allg. Chem.* **553,** 106 (1987). *Met.* **154,** 271 (1989).
- 6. G. Svensson, J. Köhler, and A. Simon, *Angew. Chem. Int. Ed. Engl.* 15. J. Köhler, R. Tischtau, and A. Simon, unpublished work. **31,** 212 (1992). 16. R. Hoppe, *Angew. Chem. Int. Ed. Engl.* **5,** 95 (1966).
- 7. J. Köhler, A. Simon, R. Tischtau, and G. Miller, *Angew. Chem. Int.* 17. R. Hoppe, "MAPLE-Programm" zur Berechnung des Coulomban-
- 8. J. Köhler, G. Svensson, and A. Simon, *Angew. Chem. Int. Ed. Engl.* 1977. **31,** 1437 (1992). 18. Quantum Design Technical Advisory MPMS No. 8, Quantum Design,
- 9. J. Köhler, R. Tischtau, and A. Simon, *J. Chem. Soc. Dalton Trans.* Inc., 1990. 830 (1991). 19. T. Hughbanks, *Prog. Solid State Chem.* **9,** 329 (1989).
- M. Sergent, *in* ''Crystal Chemistry and Properties of Materials with 10. L. H. Brixner, H.-Y. Chen, and C. M. Foris, *J. Solid State Chem.* **45,**
- Dordrecht, 1986. 11. J. C. Calabrese, L. H. Brixner, and C. M. Foris, *J. Solid State Chem.*
	-
- 3. D. M. Evans and L. Katz, *J. Solid State Chem.* 6, 459 (1973). 13. J. Köhler, A. Simon, J. Hibble, and A. K. Cheetham, *J. Less-Common*
	-
	-
	-
	- *Ed. Engl.* **28,** 1662 (1989). teils der Gitterenergie und partieller Madelungfaktoren, Giessen,
		-
		-